standard.chunk 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351
  1. #include <common/lighting/brdf>
  2. #include <common/lighting/bxdf>
  3. #include <common/lighting/attenuation>
  4. #include <common/lighting/functions>
  5. #include <lighting-models/model-functions/standard-common>
  6. bool CCSurfacesLightingEnableShadow(in float NoL)
  7. {
  8. #if CC_SURFACES_LIGHTING_TRANSMIT_DIFFUSE
  9. // for back light shadows
  10. return true;
  11. #elif CC_SURFACES_LIGHTING_SSS
  12. // for over-bumped surfaces
  13. return true;
  14. #else
  15. return NoL > 0.0;
  16. #endif
  17. }
  18. float CCSurfacesLightingCalculateDistanceAttenuation(in LightingIntermediateData lightingData, in vec4 lightSizeRangeAngle, in float lightType)
  19. {
  20. return CalculateDistanceAttenuation(lightingData.distToLightSqr, lightSizeRangeAngle.x, lightSizeRangeAngle.y, lightType);
  21. }
  22. float CCSurfacesLightingCalculateAngleAttenuation(in LightingIntermediateData lightingData, in vec4 lightSizeRangeAngle, in vec3 spotLightDir)
  23. {
  24. return CalculateAngleAttenuation(spotLightDir, lightingData.L, lightSizeRangeAngle.z);
  25. }
  26. void CCSurfacesLightingCalculateDirect(out vec3 lightingDiffuse, out vec3 lightingSpecular, in LightingIntermediateData lightingData, in vec4 lightSourceColorAndIntensity)
  27. {
  28. #if !CC_SURFACES_LIGHTING_DISABLE_DIFFUSE
  29. lightingDiffuse = CalculateDirectDiffuse(lightingData, lightSourceColorAndIntensity);
  30. #else
  31. lightingDiffuse = vec3(0.0);
  32. #endif
  33. #if !CC_SURFACES_LIGHTING_DISABLE_SPECULAR
  34. lightingSpecular = CalculateDirectSpecular(lightingData, lightSourceColorAndIntensity);
  35. #else
  36. lightingSpecular = vec3(0.0);
  37. #endif
  38. }
  39. void CCSurfacesLightingCalculateEnvironment(out vec3 lightingDiffuse, out vec3 lightingSpecular, in LightingIntermediateData lightingData, float lightIntensity)
  40. {
  41. #if !CC_SURFACES_LIGHTING_DISABLE_DIFFUSE
  42. lightingDiffuse = CalculateEnvironmentDiffuse(lightingData, lightIntensity);
  43. #else
  44. lightingDiffuse = vec3(0.0);
  45. #endif
  46. #if !CC_SURFACES_LIGHTING_DISABLE_SPECULAR
  47. lightingSpecular = CalculateEnvironmentSpecular(lightingData, lightIntensity);
  48. #else
  49. lightingSpecular = vec3(0.0);
  50. #endif
  51. }
  52. vec3 CCSurfaceLightingCalculateExtraFresnel(in LightingIntermediateData lightingData)
  53. {
  54. float fresnel = CalculateFresnelCoefficient(lightingData.ior, lightingData.NoVAbsSat); //NoVSat for single side, and NoVAbsSat for two sided
  55. return vec3(fresnel);
  56. }
  57. void CCSurfaceLightingCalculateDirectFresnel(out vec3 directGF, in LightingIntermediateData lightingData, vec3 specularColor, in vec3 environmentGF)
  58. {
  59. #if CC_SURFACES_USE_LEGACY_COMPATIBLE_LIGHTING
  60. // local lighting also use EnvIntegratedFresnel for estimated GF terms, calculate accurate GF instead in the future, CCSurfacesDebugViewLightingResult also needs modified
  61. directGF = environmentGF;
  62. #else
  63. float roughness = lightingData.specularParam;
  64. directGF = F_SchlickMultiplier(specularColor, lightingData.VoHAbsSat) * G_Schlick(roughness, lightingData.NoVSat, lightingData.NoLSat);
  65. #endif
  66. }
  67. void CCSurfaceLightingCalculateEnvironmentFresnel(out vec3 integratedGF, vec3 integratedF, in LightingIntermediateData lightingData, vec3 specularColor)
  68. {
  69. float roughness = lightingData.specularParam;
  70. IntegratedGFMultiplier(integratedGF, integratedF, specularColor, roughness, lightingData.NoVAbsSat);
  71. }
  72. #if CC_SURFACES_LIGHTING_USE_MULTIPLE_LAYER_BLEND
  73. void CCSurfaceLightingCalculateDirectSubLayerFresnel(out vec3 subLayerF, in LightingIntermediateData lightingData, vec3 specularColor)
  74. {
  75. float VoH = lightingData.VoHAbsSat;
  76. subLayerF = vec3(exp2( (-5.55473 * VoH - 6.98316) * VoH ));
  77. }
  78. void CCSurfaceLightingCalculateEnvironmentSubLayerFresnel(out vec3 subLayerF, in LightingIntermediateData lightingData, vec3 specularColor)
  79. {
  80. // ior related:
  81. subLayerF = vec3(CalculateFresnelCoefficient(lightingData.ior, lightingData.NoVSat));
  82. // F0 F90 related:
  83. // if (equalf(lightingData.ior, 0.0))
  84. // subLayerF = vec3(CalculateFresnelCoefficient(lightingData.F0, lightingData.F90, lightingData.NoVSat));
  85. }
  86. #endif
  87. #if CC_SURFACES_LIGHTING_TRANSMIT_SPECULAR
  88. // do not support anisotropy
  89. void CCSurfacesLightingCalculateDirectTransmitSpecular(out vec3 lightingSpecular, in LightingIntermediateData lightingData, in vec4 lightSourceColorAndIntensity)
  90. {
  91. float roughness = lightingData.specularParam;
  92. float NoLSat = saturate(dot(lightingData.N, -lightingData.L));
  93. vec3 irradiance = NoLSat * lightSourceColorAndIntensity.rgb * lightSourceColorAndIntensity.w;
  94. vec3 R = CalculateRefractDirection(lightingData.N, lightingData.V, lightingData.NoV, lightingData.ior);
  95. float RoL = dot(lightingData.L, normalize(R));
  96. float calcSpec = D_GGX(roughness, saturate(RoL));
  97. lightingSpecular = irradiance * calcSpec;
  98. }
  99. void CCSurfacesLightingCalculateEnvironmentTransmitSpecular(out vec3 lightingSpecular, in LightingIntermediateData lightingData, float lightIntensity)
  100. {
  101. vec3 envSpec = vec3(0.0);
  102. vec3 R = CalculateRefractDirection(lightingData.N, lightingData.V, lightingData.NoV, lightingData.ior);
  103. float roughness = lightingData.specularParam;
  104. #if CC_USE_REFLECTION_PROBE
  105. #if CC_USE_REFLECTION_PROBE == REFLECTION_PROBE_TYPE_CUBE
  106. envSpec = EnvReflection(cc_reflectionProbeCubemap, R, roughness, cc_ambientGround.w);
  107. #endif
  108. // todo: planar refraction from scene color when use planar probe or no probe
  109. #endif
  110. #if CC_USE_IBL && CC_USE_REFLECTION_PROBE != REFLECTION_PROBE_TYPE_CUBE
  111. envSpec = EnvReflection(cc_environment, R, roughness, cc_ambientGround.w);
  112. #endif
  113. lightingSpecular = CalculateScattering(envSpec * lightIntensity, lightingData.transmitScatteringParams.w, lightingData.transmitScatteringParams.x, lightingData.transmitScatteringParams.x, lightingData.transmitScatteringParams.y, lightingData.inScatteringColor.rgb, lightingData.outScatteringColor.rgb);
  114. }
  115. #endif
  116. #if CC_SURFACES_LIGHTING_TRANSMIT_DIFFUSE
  117. #define objectThickness lightingData.transmitDiffuseParams.x
  118. #define transmitMask lightingData.transmitDiffuseParams.y
  119. #define envTransmitScale lightingData.transmitDiffuseParams.z
  120. #define envFixedDistanceScale lightingData.transmitScatteringParams.w
  121. #define transmitDistanceScale lightingData.transmitDiffuseParams.w
  122. #define DONOT_USE_SHADOWMAP_DISTANCE (equalf(lightingData.shadowPosAndDepth.z, lightingData.shadowPosAndDepth.w) && equalf(lightingData.shadowPosAndDepth.z, SURFACES_MAX_TRANSMIT_DEPTH_VALUE))
  123. // view space depth is negative value, so use shadowMap - current
  124. #define SHADOWMAP_DISTANCE max(lightingData.shadowPosAndDepth.w - lightingData.shadowPosAndDepth.z, 0.0)
  125. //clamp(lightingData.shadowPosAndDepth.w - lightingData.shadowPosAndDepth.z, lightingData.transmitDiffuseParams.z, lightingData.transmitDiffuseParams.w)
  126. void CCSurfacesLightingCalculateDirectTransmitDiffuse(out vec3 transmitDiffuse, in LightingIntermediateData lightingData, in vec4 lightSourceColorAndIntensity, float shadow)
  127. {
  128. #if !CC_SURFACES_LIGHTING_DISABLE_DIFFUSE
  129. float distance = lightingData.transmitScatteringParams.w;
  130. if (!DONOT_USE_SHADOWMAP_DISTANCE)
  131. {
  132. distance = transmitDistanceScale * SHADOWMAP_DISTANCE;
  133. shadow = step(SHADOWMAP_DISTANCE, objectThickness) > 0.0 ? 1.0 : shadow;
  134. }
  135. vec3 backIrradiance = CalculateDirectDiffuse(lightingData, lightSourceColorAndIntensity);
  136. backIrradiance *= shadow * transmitMask;
  137. transmitDiffuse = CalculateScattering(backIrradiance, distance, lightingData.transmitScatteringParams.x, lightingData.transmitScatteringParams.x, lightingData.transmitScatteringParams.y, lightingData.inScatteringColor.rgb, lightingData.outScatteringColor.rgb);
  138. #else
  139. transmitDiffuse = vec3(0.0);
  140. #endif
  141. }
  142. // depend on dir-light shadow direction, if there are some occluders in front of the light source, env transmit will dark
  143. void CCSurfacesLightingCalculateEnvironmentTransmitDiffuse(out vec3 transmitDiffuse, in LightingIntermediateData lightingData, float lightIntensity, float ao, vec3 shadowLightDirection)
  144. {
  145. #if !CC_SURFACES_LIGHTING_DISABLE_DIFFUSE
  146. float distance = lightingData.transmitScatteringParams.w;
  147. if (!DONOT_USE_SHADOWMAP_DISTANCE)
  148. {
  149. float shadowMapDistance = transmitDistanceScale * SHADOWMAP_DISTANCE;
  150. float fixedDistance = transmitDistanceScale * envFixedDistanceScale;
  151. // lerp between shadowmap distance and fix distance to fix shadow and normal direction not match
  152. float lerpCoef = saturate(dot(lightingData.N, shadowLightDirection));
  153. distance = mix(fixedDistance, shadowMapDistance, lerpCoef);
  154. }
  155. vec3 backIrradiance = CalculateEnvironmentDiffuse(lightingData, lightIntensity);
  156. backIrradiance *= ao * transmitMask;
  157. transmitDiffuse = CalculateScattering(backIrradiance, distance, lightingData.transmitScatteringParams.x, lightingData.transmitScatteringParams.x, lightingData.transmitScatteringParams.y, lightingData.inScatteringColor.rgb, lightingData.outScatteringColor.rgb);
  158. transmitDiffuse *= envTransmitScale;
  159. #else
  160. transmitDiffuse = vec3(0.0);
  161. #endif
  162. }
  163. #undef objectThickness
  164. #undef transmitMask
  165. #undef envTransmitScale
  166. #undef envFixedDistanceScale
  167. #undef DONOT_USE_SHADOWMAP_DISTANCE
  168. #undef SHADOWMAP_DISTANCE
  169. #endif
  170. #if CC_SURFACES_LIGHTING_2ND_LAYER_SPECULAR
  171. // this surface function used for adjust TRT color with brdf lighting, input are lighting result and surface data
  172. // the default function can only be defined here
  173. #ifndef CC_SURFACES_FRAGMENT_MODIFY_2ND_SPECULAR_COLOR
  174. vec3 SurfacesLightingGet2ndSpecularColor(float specBRDF, bool isSaturated)
  175. {
  176. return vec3(saturate(specBRDF));
  177. }
  178. #endif
  179. void CCSurfacesLightingCalculateDirect2ndSpecular(out vec3 specularLighting, in LightingIntermediateData lightingData, in vec4 lightSourceColorAndIntensity, float intensitySpecular, in vec3 originalSpecular)
  180. {
  181. #if !CC_SURFACES_LIGHTING_DISABLE_SPECULAR
  182. vec3 unused;
  183. // light color has less influence
  184. CCSurfacesLightingCalculateDirect(unused, specularLighting, lightingData, lightSourceColorAndIntensity);
  185. // float brdf = specularLighting.x;
  186. // vec3 Color = SurfacesLightingGet2ndSpecularColor(brdf, true);
  187. // todo: modify Color to add some light color influence
  188. // specularLighting *= Color * lightSourceColorAndIntensity.w;
  189. specularLighting *= intensitySpecular;
  190. // specularLighting -= originalSpecular;
  191. #else
  192. specularLighting = vec3(0.0);
  193. #endif
  194. }
  195. void CCSurfacesLightingCalculateEnvironment2ndSpecular(out vec3 specularLighting, in LightingIntermediateData lightingData, float lightIntensity, float intensitySpecular, in vec3 originalSpecular)
  196. {
  197. #if !CC_SURFACES_LIGHTING_DISABLE_SPECULAR
  198. vec3 unused;
  199. // light color has less influence
  200. specularLighting = CalculateEnvironmentSpecular(lightingData, lightIntensity);
  201. // float brdf = length(specularLighting);
  202. // vec3 Color = SurfacesLightingGet2ndSpecularColor(brdf, false);
  203. // todo: modify Color to add some light color influence
  204. // specularLighting *= Color * lightIntensity;
  205. specularLighting *= intensitySpecular;
  206. // specularLighting -= originalSpecular;
  207. #else
  208. specularLighting = vec3(0.0);
  209. #endif
  210. }
  211. void CCSurfacesLightingCalculateDirectSheen(out vec3 specularLighting, out vec3 directGF, in LightingIntermediateData lightingData, in vec4 lightSourceColorAndIntensity, float intensitySpecular)
  212. {
  213. #if !CC_SURFACES_LIGHTING_DISABLE_SPECULAR
  214. float sheen = Sheen(lightingData.NoHSat, lightingData.NoL, lightingData.NoV, lightingData.specularParam);
  215. specularLighting = vec3(sheen) * intensitySpecular * lightSourceColorAndIntensity.xyz * lightSourceColorAndIntensity.w;
  216. directGF = vec3(1.0);
  217. #else
  218. specularLighting = vec3(0.0);
  219. #endif
  220. }
  221. void CCSurfacesLightingCalculateEnvironmentSheen(out vec3 specularLighting, out vec3 environmentGF, in LightingIntermediateData lightingData, float lightIntensity, float intensitySpecular)
  222. {
  223. #if !CC_SURFACES_LIGHTING_DISABLE_SPECULAR
  224. LightingIntermediateData lightingDataSheen = lightingData;
  225. float roughness = lightingData.specularParam;
  226. // sample max distribute normal-vertical-direction reflection with fixed roughness
  227. vec3 L = normalize(mix(lightingDataSheen.B, lightingDataSheen.N, 0.3));
  228. lightingDataSheen.specularParam = mix(0.5, 0.9, roughness);
  229. lightingDataSheen.V = lightingDataSheen.N = L;
  230. specularLighting = CalculateEnvironmentSpecular(lightingDataSheen, lightIntensity);
  231. specularLighting *= intensitySpecular;
  232. // range limitation
  233. environmentGF = vec3(Sheen(lightingData.NoV, roughness));
  234. #else
  235. specularLighting = vec3(0.0);
  236. #endif
  237. }
  238. #endif
  239. #if CC_SURFACES_LIGHTING_TT
  240. // TT is a hacked fabric simulation algorithm
  241. void CCSurfacesLightingCalculateDirectTT(inout LightingResult lightingResult, in LightingIntermediateData lightingData, in vec4 lightSourceColorAndIntensity)
  242. {
  243. lightingResult.diffuseColorWithLightingTT = lightingResult.diffuseColorWithLighting;
  244. float w = lightingData.ttIntensity;
  245. // w = 0 equals to diffuse lighting without scattering
  246. // ttScatterCoef start from 0.0
  247. vec3 scatteredLighting = pow(saturate(lightingData.baseColorTT * w + lightingData.NoLSat) * lightingData.NoLSat, vec3(mix(0.5, 0.5 + lightingData.ttScatterCoef, w)));
  248. // scattered = tt + origin diffuse
  249. vec3 ttLighting = scatteredLighting - lightingData.NoLSat;
  250. lightingResult.directTT = ttLighting * DiffuseCoefficient_EnergyConservation * lightSourceColorAndIntensity.xyz* lightSourceColorAndIntensity.w;
  251. }
  252. #endif
  253. #if CC_SURFACES_LIGHTING_USE_MULTIPLE_LAYER_BLEND
  254. // todo: layer result in LightingResult separate to single structure like LightingResultPerLayer
  255. // todo: after structuring, add TRT/Sheen to eachLayer's direct/environmentSpecular before blending
  256. void CCSurfacesLightingCalculateDirectMultiLayerBlending(inout LightingResult lightingResult
  257. , in LightingIntermediateData lightingData2ndLayer
  258. #if CC_SURFACES_LIGHTING_USE_MULTIPLE_LAYER_BLEND > 1
  259. // add more layers...
  260. #endif
  261. )
  262. {
  263. vec3 lastLayerF, zeroDiffuse = vec3(0.0);
  264. vec3 blendedBaseD = lightingResult.directDiffuse, blendedBaseS = lightingResult.directSpecular;
  265. InitializeLayerBlending(blendedBaseD, blendedBaseS,
  266. lightingResult.directDiffuseSubLayers, lightingResult.directSpecularSubLayers,
  267. lastLayerF,
  268. lightingResult.directDiffuse, lightingResult.directSpecular
  269. );
  270. CCSurfaceLightingCalculateDirectSubLayerFresnel(lightingResult.directSubLayerF, lightingData2ndLayer, lightingResult.specularColorWithLighting2ndSpecular);
  271. CalculateLayerBlending (blendedBaseD, blendedBaseS,
  272. lightingResult.directDiffuseSubLayers, lightingResult.directSpecularSubLayers,
  273. lastLayerF,
  274. zeroDiffuse, zeroDiffuse,
  275. lightingResult.direct2ndSpecular, lightingResult.specularColorWithLighting2ndSpecular,
  276. lightingData2ndLayer.layerOpacity, lightingResult.directSubLayerF
  277. );
  278. #if CC_SURFACES_LIGHTING_USE_MULTIPLE_LAYER_BLEND > 1
  279. // add more layers...
  280. #endif
  281. // output
  282. lightingResult.directDiffuse = blendedBaseD;
  283. lightingResult.directSpecular = blendedBaseS;
  284. }
  285. void CCSurfacesLightingCalculateEnvironmentMultiLayerBlending(inout LightingResult lightingResult
  286. , in LightingIntermediateData lightingData2ndLayer
  287. #if CC_SURFACES_LIGHTING_USE_MULTIPLE_LAYER_BLEND > 1
  288. // add more layers...
  289. #endif
  290. )
  291. {
  292. vec3 lastLayerF, zeroDiffuse = vec3(0.0);
  293. vec3 blendedBaseD = lightingResult.environmentDiffuse, blendedBaseS = lightingResult.environmentSpecular;
  294. InitializeLayerBlending(blendedBaseD, blendedBaseS,
  295. lightingResult.environmentDiffuseSubLayers, lightingResult.environmentSpecularSubLayers,
  296. lastLayerF,
  297. lightingResult.environmentDiffuse, lightingResult.environmentSpecular
  298. );
  299. CCSurfaceLightingCalculateEnvironmentSubLayerFresnel(lightingResult.environmentSubLayerF, lightingData2ndLayer, lightingResult.specularColorWithLighting2ndSpecular);
  300. CalculateLayerBlending (blendedBaseD, blendedBaseS,
  301. lightingResult.environmentDiffuseSubLayers, lightingResult.environmentSpecularSubLayers,
  302. lastLayerF,
  303. zeroDiffuse, zeroDiffuse,
  304. lightingResult.environment2ndSpecular, lightingResult.specularColorWithLighting2ndSpecular,
  305. lightingData2ndLayer.layerOpacity, lightingResult.environmentSubLayerF
  306. );
  307. #if CC_SURFACES_LIGHTING_USE_MULTIPLE_LAYER_BLEND > 1
  308. // add more layers...
  309. #endif
  310. // output
  311. lightingResult.environmentDiffuse = blendedBaseD;
  312. lightingResult.environmentSpecular = blendedBaseS;
  313. }
  314. #endif